Presentation to CALFED WUE Subcommittee November 5, 2002

Agricultural Drainage Desalination

- Opportunity
- Technology
- Economics
- What's Happening

By Ron Enzweiler, Principal, WaterTech Partners

WaterTech Partners

- Private consulting & contract R&D firm
- Ronald Enzweiler, Principal/Owner
 - B. Ind. Engrg., MS Civil Engrg., MBA, P.E.
 - managed over \$25 mm in R&D projects in career
 - Affiliated with CIFAR at UC Davis
- Current CALFED contracts:
 - \$200K Ag WUE: Irrigation Efficiency Study
 - \$316K ERP/WQ: Ag Drainage Recycling (pending)

CALFED program impacts

- Ecosystem Restoration
 - Se, boron & salinity TDMLs for SJR
 - large evaporation ponds wildlife hazard
- Bay-Delta Water Quality
 - 80% of Se load from ag drainage (USGS)
- Water Use Efficiency (recycling)
 - Potential cost-effective "new water" source

Drainage problems affect 30% of San Joaquin Valley

"Problem Area" (GW < 5 ft. depth) = 743,000 acres

"Potential Area" (5 ft < GW < 15 ft) = 763,000 acres

Total = 1.5 million ac.

(1997 DWR data)

Potential "new water" from drainage

	Area ¹	Rate ²	Flow	Current
	(acres)	(AF/ac)	(AF/yr)	Disposition
Grasslands ³	36,500	0.35	12,800	Drain to SJR
Westlands ³	228,000	0.35	79,800	Perched GW
Tulare	301,000	0.20	105,400	Evap Ponds
Kern	58,000	0.35	20,300	Perched & EP
Total	623,500		218,300	

¹ DWR Monitoring Report (3/00) & USBR Drainage Service Re-Evaluation Report (12/01)

² Source Reduction Final Report (2/99), SVJ Drainage Implementation Program

³ Omitted as "Potential Irrecoverable Losses" in Table 1-2 of CALFED WUE Plan (7/00)

Existing inoperative RO plant in Panoche

CaSO₄ (gypsum) fouling of spiral membranes

normal spiral cross-section

passages blocked with precipitated CaSO4

Why is recycling w/RO now feasible?

- Expiration in 2000 of "seeded RO" patent
- Plastic modules for tubular NF membrane
- Better boron rejection RO spiral membranes
- No treatment option works (Se < 5 μg/L)</p>
- Seawater RO reality in California (<\$800/AF)</p>
- SB 221 (the "show me the water" law)

Schematic of DP³RO[™] Ag Drainage Recycling Process*

* Double Pass Preferential Precipitation Reverse Osmosis

Membrane tests now in progress*

Different PCI tubular membranes Test system & crew at Walnut Creek shop

Water from Panoche

*funded by \$75K PIER grant from Calif. Energy Commission

Clean water (permeate)

Solids & Brine (concentrate)

Tubular membranes in plastic modules now available

This technology in use for drinking water supply in rural areas of UK Canada and Colorado Full size (300 AF/yr) ag drainage plant will need 9-12 skids like this

Difference Ag Drainage vs. Seawater RO

	Ag Drainage	Seawater	
Salinity:	5,000 to 10,000 mg/L	> 35,000 mg/L	
Feed Pressure:	100 - 250 psi	800 – 1,000 psi	
Power Use	2.0 kWhr/m³	2.8 - 3.0 kWhr/m ³	
% CaSO4 Saturation:	100%	21%	
Biofouling:	No	Yes	
Salt Rejection:	98% (100 mg/L)	99.5% (300 mg/L)	
Recovery:	>90% desirable	40% to 50%	

Cost comparisons: "new water"

1		Ag Drainage	Seawater
Typical Size	AF/year	300	50,000
Cost to Build:	\$/gal/day	\$4.00	\$5.00
Brine disposal:		on-site pond	ocean outfall
Operating Costs:		\$/acre-foot	\$/acre-foot
Power	\$0.08/kWh	\$195	\$300
Replacements	4 vs. 6 yrs	155	80
Chemicals, labor, services		<u>90</u>	<u>125</u>
Sub-Total:		\$440	\$505
Bond Financing	25 yrs	250	310
TOTAL		\$690	\$815

What's Happening

	\$mm	02	03	04	05
pilot plant	0.49		Phase I		
full plant	2.1			Phase	11 & 111
plans & EIR for network	0.60				plant #2 ->

